梯度检验
欢迎来到本周的最后作业! 在这个任务中,您将学习实现并使用梯度检验。
您是全球范围内开展移动支付的团队的一部分,并被要求建立一个深度学习模式来检测欺诈行为 - 每当有人付款时,您想要查看付款是否有欺诈行为,例如用户 帐户已被黑客占用。
但是反向传播实施起来相当具有挑战性,有时会有错误。 因为这是关键任务应用程序,所以贵公司的首席执行官要真正确定您的反向传播实施是正确的。 你的首席执行官说:“给我一个证明你的反向传播实际上是有效的!” 为了让这个保证,你将使用“梯度检验”。
我们开始做吧!
首先依旧是导入所有需要的包
# Packages import numpy as np from testCases import * from gc_utils import sigmoid, relu, from gc_utils import dictionary_to_vector, vector_to_dictionary from gc_utils import gradients_to_vector
1) 梯度检验是如何工作的呢?
反向传播算法计算梯度(∂J/∂θ),其中θ表示模型的参数。J是利用前向传播算法和代价函数计算的结果。
由于前向传播算法相对容易执行,你对它非常有信心,所以你几乎100%的确认计算出来的J是正确的。因此,你可以用你的代码来计算J以便验证计算(∂J/∂θ)的代码。
让我们回顾一下梯度的概念:

我们可以知道:
(1)此式是你想验证计算正确的式子。
(2)由于你对于计算J非常有信心,你可以根据此计算出J(θ+ε)和J(θ−ε)。
2) 1维梯度检验
考虑一个1维线性函数 J(θ)=θX
你将运行代码来计算J以及它的导数,然后利用梯度检验确保J的导数计算是否正确。

上面的流程图展示了计算的步骤:首先从X开始,然后计算函数J(前向传播),最后计算其导数(反向传播)。
Exercise: 执行前向传播和反向传播代码。例如:compute both J(.) ("forward propagation") and its derivative with respect to θ ("backward propagation"), in two separate functions.
#GRADED FUNCTION: forward_propagation def forward_propagation(x, theta): """ Implement the linear forward propagation (compute J) presented in Figure 1 (J(theta) = theta * x) Arguments: x -- a real-valued input theta -- our parameter, a real number as well Returns: J -- the value of function J, computed using the formula J(theta) = theta * x """ ### START CODE HERE ### (approx. 1 line) J = theta * x ### END CODE HERE ### return J
测试一下:
x, theta = 2, 4
J = forward_propagation(x, theta)
print ("J = " + str(J))
结果为 J=8
Exercise: 执行反向传播(求导)代码。
# GRADED FUNCTION: backward_propagation def backward_propagation(x, theta): """ Computes the derivative of J with respect to theta (see Figure 1). Arguments: x -- a real-valued input theta -- our parameter, a real number as well Returns: dtheta -- the gradient of the cost with respect to theta """ ### START CODE HERE ### (approx. 1 line) dtheta = x ### END CODE HERE ### return dtheta
测试一下:
x, theta = 2, 4
dtheta = backward_propagation(x, theta)
print ("dtheta = " + str(dtheta))
Exercise: 为了展示函数backward_propagation() 正确的计算了梯度,让我们来做梯度检验。
Instructions:
l 首先利用最上面的式子和ε计算 "gradapprox" 。步骤如下:

l 然后,利用反向传播计算梯度,并把结果储存在变量"grad"中。
l 利用笔记2-1中的公式计算 “gradapprox”和“grad”之间的相对差值。
三步来计算这个公式:
l 利用np.linalg.norm(...)计算分子
l 调用np.linalg.norm(...)两次计算分母
l 分子除以分母
如果上面的二范数计算出来10−7,那么可以证明这个计算正确,否则计算错误。
# GRADED FUNCTION: gradient_check
def gradient_check(x, theta, epsilon = 1e-7):
"""
Arguments:
x -- a real-valued input
theta -- our parameter, a real number
as well
epsilon -- tiny shift to the input to
compute approximated gradient with formula(1)
Returns:
difference --
difference (2) between the approximated gradient
and the backward propagation gradient
"""
# Compute gradapprox using left side of formula (1).
#epsilon is small enough, you don't need to worry
#about the limit.
### START CODE HERE ### (approx. 5 lines)
thetaplus=theta + epsilon# Step 1
thetaminus=theta - epsilon # Step 2
J_plus=forward_propagation(x, thetaplus)
J_minus=forward_propagation(x, thetaminus)
gradapprox=(J_plus - J_minus)/(2 * epsilon)
### END CODE HERE ###
# Check if gradapprox is close enough
#to the output of backward_propagation()
### START CODE HERE ### (approx. 1 line)
grad = backward_propagation(x, theta)
### END CODE HERE ###
### START CODE HERE ### (approx. 1 line)
numerator=np.linalg.norm(grad-gradapprox)
denominator=np.linalg.norm(grad)+
np.linalg.norm(gradapprox)
difference = numerator / denominator
### END CODE HERE ###
if difference < 1e-7:
print ("The gradient is correct!")
else:
print ("The gradient is wrong!")
return difference
测试一下:
x, theta = 2, 4
difference = gradient_check(x, theta)
print("difference = " + str(difference))
结果:
The gradient is correct!
difference = 2.91933588329e-10
现在,在更一般的情况下,您的成本函数J具有多于一个一维输入。当你训练一个神经网络时,θ实际上由多个矩阵W [l]组成,并且偏向b [l]!知道如何用更高维度的输入进行梯度检验是很重要的。我们开始做吧!
3) N维梯度检验

LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
代码如下:
def forward_propagation_n(X, Y, parameters): """ Implements the forward propagation (and computes the cost) presented in Figure 3. Arguments: X -- training set for m examples Y -- labels for m examples parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3": W1 -- weight matrix of shape (5, 4) b1 -- bias vector of shape (5, 1) W2 -- weight matrix of shape (3, 5) b2 -- bias vector of shape (3, 1) W3 -- weight matrix of shape (1, 3) b3 -- bias vector of shape (1, 1) Returns: cost -- the cost function (logistic cost for one example) """ # retrieve parameters m = X.shape[1] W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] W3 = parameters["W3"] b3 = parameters["b3"] #LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID Z1 = np.dot(W1, X) + b1 A1 = relu(Z1) Z2 = np.dot(W2, A1) + b2 A2 = relu(Z2) Z3 = np.dot(W3, A2) + b3 A3 = sigmoid(Z3) # Cost logprobs = np.multiply(-np.log(A3),Y) +np.multiply(-np.log(1 - A3), 1 - Y) cost = 1./m * np.sum(logprobs) cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) return cost, cache
反向传播代码如下:
def backward_propagation_n(X, Y, cache):
"""
Implement the backward propagation
presented in figure 2.
Arguments:
X -- input datapoint, of shape (input size, 1)
Y -- true "label"
cache -- cache output from
forward_propagation_n()
Returns:
gradients -- A dictionary with the gradients of
the cost with respect to each parameter, activation
and pre-activation variables.
"""
m = X.shape[1]
(Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)
= cache
dZ3 = A3 - Y
dW3 = 1./m * np.dot(dZ3, A2.T)
db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)
dA2 = np.dot(W3.T, dZ3)
dZ2 = np.multiply(dA2, np.int64(A2 > 0))
#print("dZ2:", dZ2)
#dW2 = 1./m * np.dot(dZ2, A1.T) * 2
dW2 = 1./m * np.dot(dZ2, A1.T)
db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)
dA1 = np.dot(W2.T, dZ2)
dZ1 = np.multiply(dA1, np.int64(A1 > 0))
#print("dZ1:", dZ1)
dW1 = 1./m * np.dot(dZ1, X.T)
#db1 = 4./m * np.sum(dZ1, axis=1, keepdims = True)
db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)
gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,
"dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2,
"dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1}
return gradients
您在欺诈检测测试集中获得了一些结果,但您并不是100%确定您的模型。没有人是完美的!让我们实施梯度检验,以验证您的梯度是否正确。
梯度检验如何工作呢?
如1)和2)所示,您要将“gradapprox”与通过反向传播计算的梯度进行比较。公示依旧不变。
然而,θ就变成了一个字典parameters。我们运行函数"dictionary_to_vector()"。这个函数将字典转变成一个称为“value”的向量。这个函数是通过重组所有的元素(W1, b1, W2, b2, W3, b3)成为向量并连接他们。
反函数"vector_to_dictionary"是将输出返回为parameters字典。


# GRADED FUNCTION: gradient_check_n
def gradient_check_n(parameters,
gradients, X, Y, epsilon = 1e-7):
"""
Checks if backward_propagation_n computes correctly
the gradient of the cost output by forward_propagation_n
Arguments:
parameters -- python dictionary containing your
parameters "W1", "b1", "W2", "b2", "W3", "b3":
grad -- output of backward_propagation_n, contains
gradients of the cost with respect to the parameters.
x -- input datapoint, of shape (input size, 1)
y -- true "label"
epsilon -- tiny shift to the input to compute
approximated gradient with formula(1)
Returns:
difference -- difference (2) between the approximated
gradient and the backward propagation gradient
"""
# Set-up variables
parameters_values, _ = dictionary_to_vector(parameters)
#print("parameters_values:", parameters_values)
grad = gradients_to_vector(gradients)
#print("grad:", grad)
num_parameters = parameters_values.shape[0]
J_plus = np.zeros((num_parameters, 1))
J_minus = np.zeros((num_parameters, 1))
gradapprox = np.zeros((num_parameters, 1))
# Compute gradapprox
for i in range(num_parameters):
# Compute J_plus[i]. Inputs: "parameters_values, epsilon".
#Output = "J_plus[i]".
# "_" is used because the function you have to outputs two
#parameters but we only care about the first one
### START CODE HERE ### (approx. 3 lines)
thetaplus = np.copy(parameters_values)# Step 1
thetaplus[i][0] = thetaplus[i][0] + epsilon# Step 2
J_plus[i], _ = forward_propagation_n
(X, Y, vector_to_dictionary(thetaplus)) # Step 3
### END CODE HERE ###
# Compute J_minus[i]. Inputs: "parameters_values, epsilon".
#Output = "J_minus[i]".
### START CODE HERE ### (approx. 3 lines)
thetaminus = np.copy(parameters_values)
thetaminus[i][0] = thetaminus[i][0] - epsilon
J_minus[i], _ = forward_propagation_n
(X, Y, vector_to_dictionary(thetaminus))
### END CODE HERE ###
# Compute gradapprox[i]
### START CODE HERE ### (approx. 1 line)
gradapprox[i] = (J_plus[i] - J_minus[i]) / (2 * epsilon)
### END CODE HERE ###
# Compare gradapprox to backward propagation gradients by
#computing difference.
### START CODE HERE ### (approx. 1 line)
numerator = np.linalg.norm(grad - gradapprox)
denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox)
difference = numerator / denominator
### END CODE HERE ###
if difference > 1e-7:
print ("\033[93m" + "There is a mistake in the
backward propagation! difference = " + str(difference) + "\033[0m")
else:
print ("\033[92m" + "Your backward propagation works
perfectly fine! difference = " + str(difference) + "\033[0m")
return difference
测试一下:
X, Y, parameters = gradient_check_n_test_case() cost, cache = forward_propagation_n(X, Y, parameters) gradients = backward_propagation_n(X, Y, cache) difference = gradient_check_n(parameters, gradients, X, Y)
结果是:
There is a mistake in the backward propagation! difference = 1.18904178788e-07
看来我们给你的backward_propagation_n代码有错误! 很好,你已经实施了梯度检验。 返回到backward_propagation并尝试查找/更正错误(提示:检查dW2和db1)。 当你认为你已经修复了,重新运行渐变检查。 请记住,如果修改代码,则需要重新执行定义backward_propagation_n()的单元格。
你能得到梯度检验来声明你的派生计算是正确的吗? 即使这部分任务没有分级,但我们强烈建议您尝试查找错误并重新运行梯度检验,直到您确信backprop现在已正确实施。
牢记:
梯度检验验证反向传播梯度与梯度的数值近似(使用正向传播计算)之间的接近程度。
梯度检验很慢,所以我们不会在每次迭代训练中运行它。 你通常会运行它,只是为了确保你的代码是正确的,然后把它关闭,并使用backprop实际的学习过程。


文章评论