吴恩达深度学习课程 DeepLearning.ai 编程作业(1-3)

Planar data classification with one hidden layer

1 – Packages

Let’s first import all the packages that you will need during this assignment. 
– numpy is the fundamental package for scientific computing with Python. 
– sklearn provides simple and efficient tools for data mining and data analysis. 
– matplotlib is a library for plotting graphs in Python. 
– testCases_v2 provides some test examples to assess the correctness of your functions 
– planar_utils provide various useful functions used in this assignment

2 – Dataset

First, let’s get the dataset you will work on. The following code will load a “flower” 2-class dataset into variables X and Y.

X, Y = load_planar_dataset()

Visualize the dataset using matplotlib. The data looks like a “flower” with some red (label y=0) and some blue (y=1) points. Your goal is to build a model to fit this data.

plt.scatter(X[0, :], X[1, :], c=np.squeeze(Y), s=40, cmap=plt.cm.Spectral);#将Y中的单维去掉

Exercise: How many training examples do you have? In addition, what is the shape of the variables X and Y?

shape_X = X.shape
print("X's shape is " + str(shape_X))
shape_Y = Y.shape
print("Y's shape is " + str(shape_Y))
m=X.shape[1]
print("We have " + str(m) + " examples.")

 

3 – Simple Logistic Regression

Before building a full neural network, lets first see how logistic regression performs on this problem. You can use sklearn’s built-in functions to do that. Run the code below to train a logistic regression classifier on the dataset. 

# Train the logistic regression classifier
clf = sklearn.linear_model.LogisticRegressionCV();
clf.fit(X.T, Y.T);
# Plot the decision boundary for logistic regression
plot_decision_boundary(lambda x: clf.predict(x), X, np.squeeze(Y))
plt.title("Logistic Regression")
 
# Print accuracy
LR_predictions = clf.predict(X.T)
print ('Accuracy of logistic regression: %d ' % float((np.dot(Y,LR_predictions) + 
       np.dot(1-Y,1-LR_predictions))/float(Y.size)*100) + '% ' + 
       "(percentage of correctly labelled datapoints)")

1.png

4 – Neural Network model

Logistic regression did not work well on the “flower dataset”. You are going to train a Neural Network with a single hidden layer.

Reminder: The general methodology to build a Neural Network is to: 
1. Define the neural network structure ( # of input units, # of hidden units, etc). (
定义神经网络结构(输入单元数量,隐藏单元数量等)。
2. Initialize the model’s parameters(
初始化模型的参数
3. Loop: 
– Implement forward propagation(
实现向前传播
– Compute loss
(计算损失函数) 
– Implement backward propagation to get the gradients(
实现向后传播以获得梯度
– Update parameters (gradient descent)(
更新参数,梯度下降)

You often build helper functions to compute steps 1-3 and then merge them into one function we call nn_model(). Once you’ve built nn_model() and learnt the right parameters, you can make predictions on new data.您经常构建帮助函数来计算步骤1-3,然后将它们合并到一个函数中,我们称之为nn_model()。一旦你建立了nn_model()并学习了正确的参数,你就可以预测新的数据。

4.1 – Defining the neural network structure

Exercise: Define three variables: 
– n_x: the size of the input layer 
输入层的节点数
– n_h: the size of the hidden layer (set this to 4) 
隐藏层的节点数
– n_y: the size of the output layer 
输出层的节点数

Hint: Use shapes of X and Y to find n_x and n_y. Also, hard code the hidden layer size to be 4.

# GRADED FUNCTION: layer_sizes
 
def layer_sizes(X, Y):
    """
    Arguments:
    X -- input dataset of shape (input size, number of examples)
    Y -- labels of shape (output size, number of examples)
 
    Returns:
    n_x -- the size of the input layer
    n_h -- the size of the hidden layer
    n_y -- the size of the output layer
    """
    ### START CODE HERE ### (≈ 3 lines of code)
    n_x = X.shape[0] # size of input layer
    n_h = 4
    n_y = Y.shape[0] # size of output layer
    ### END CODE HERE ###
    return (n_x, n_h, n_y)

4.2 – Initialize the model’s parameters

Exercise: Implement the function initialize_parameters().

Instructions
– Make sure your parameters’ sizes are right. Refer to the neural network figure above if needed.(
确保你的参数的大小是正确的。如果需要,请参考上面的神经网络图。
– You will initialize the weights matrices with random values. (
你将用随机值初始化权重矩阵。
– Use: 
np.random.randn(a,b) * 0.01 to randomly initialize a matrix of shape (a,b). 
– You will initialize the bias vectors as zeros. (
你将初始化偏置向量为零。
– Use: 
np.zeros((a,b)) to initialize a matrix of shape (a,b) with zeros.

def initialize_parameters(n_x, n_h, n_y):
    """
    Argument:
    n_x -- size of the input layer
    n_h -- size of the hidden layer
    n_y -- size of the output layer
 
    Returns:
    params -- python dictionary containing your parameters:
                    W1 -- weight matrix of shape (n_h, n_x)
                    b1 -- bias vector of shape (n_h, 1)
                    W2 -- weight matrix of shape (n_y, n_h)
                    b2 -- bias vector of shape (n_y, 1)
    """
 
    np.random.seed(2) 
    # we set up a seed so that your output matches ours 
    #although the initialization is random.
 
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = np.random.randn(n_h, n_x)
    W2 = np.random.randn(n_y, n_h)
    b1 = np.zeros((n_h, 1))
    b2 = np.zeros((n_y, 1))
    ### END CODE HERE ###
 
    assert (W1.shape == (n_h, n_x))
    assert (b1.shape == (n_h, 1))
    assert (W2.shape == (n_y, n_h))
    assert (b2.shape == (n_y, 1))
 
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
 
return parameters

 

4.3 – The Loop

Question: Implement forward_propagation().

Instructions
– Look above at the mathematical representation of your classifier.(
请看上面的分类器的数学表示。
– You can use the function 
sigmoid(). It is built-in (imported) in the notebook.(你可以使用函数sigmoid().它是notebook的内置函数
– You can use the function 
np.tanh(). It is part of the numpy library.(你可以使用函数np.tanh().它是notebook的内置函数
– The steps you have to implement are: 
1. Retrieve each parameter from the dictionary “parameters” (which is the output of 
initialize_parameters()) by using parameters[".."].(使用parameters [“..”]从字典“parameters”(这是initialize_parameters()的输出)中检索每个参数。
2. Implement Forward Propagation. Compute 
Z[1],A[1],Z[2] and A[2] (the vector of all your predictions on all the examples in the training set).(实现向前传播。计算Z[1]A[1]Z[2]A[2](训练中所有例子的所有预测的向量组)。
– Values needed in the backpropagation are stored in “
cache“. The cache will be given as an input to the backpropagation function.(反向传播所需的值存储在cache”中。cache`将作为反向传播函数的输入。)

# GRADED FUNCTION: forward_propagation
 
def forward_propagation(X, parameters):
    """
    Argument:
    X -- input data of size (n_x, m)
    parameters -- python dictionary containing your parameters (output of initialization function)
 
    Returns:
    A2 -- The sigmoid output of the second activation
    cache -- a dictionary containing "Z1", "A1", "Z2" and "A2"
    """
    # Retrieve each parameter from the dictionary "parameters"
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = parameters['W1']
    W2 = parameters['W2']
    b1 = parameters['b1']
    b2 = parameters['b2']
    ### END CODE HERE ###
 
    # Implement Forward Propagation to calculate A2 (probabilities)
    ### START CODE HERE ### (≈ 4 lines of code)
    Z1 = np.dot(W1, X) + b1
    A1 = np.tanh(Z1)
    Z2 = np.dot(W2, A1) + b2
    A2 = np.tanh(Z2)
    ### END CODE HERE ###
 
    assert(A2.shape == (1, X.shape[1]))
 
    cache = {"Z1": Z1,
             "A1": A1,
             "Z2": Z2,
             "A2": A2}
 
return A2, cache

 

Exercise: Implement compute_cost() to compute the value of the cost J.

Instructions
– There are many ways to implement the cross-entropy loss. To help you, we give you how we would have implemented 
i=0my(i)log(a[2](i)):

# GRADED FUNCTION: compute_cost
 
def compute_cost(A2, Y, parameters):
    """
    Computes the cross-entropy cost given in equation (13)
 
    Arguments:
    A2 -- The sigmoid output of the second activation, of shape (1, number of examples)
    Y -- "true" labels vector of shape (1, number of examples)
    parameters -- python dictionary containing your parameters W1, b1, W2 and b2
 
    Returns:
    cost -- cross-entropy cost given equation (13)
    """
 
    m = Y.shape[1] # number of example
 
    # Compute the cross-entropy cost
    ### START CODE HERE ### (≈ 2 lines of code)
    logprobs = np.multiply(np.log(A2),Y)
    cost = -np.sum(logprobs + np.multiply(np.log(1 - A2),1 - Y))/m
    ### END CODE HERE ###
 
    cost = np.squeeze(cost)     # makes sure cost is the dimension we expect. 
                                # E.g., turns [[17]] into 17 
    assert(isinstance(cost, float))
 
    return cost

梯度下降算法:

1517492239122133.png

# GRADED FUNCTION: backward_propagation
 
def backward_propagation(parameters, cache, X, Y):
    """
    Implement the backward propagation using the instructions above.
 
    Arguments:
    parameters -- python dictionary containing our parameters
    cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".
    X -- input data of shape (2, number of examples)
    Y -- "true" labels vector of shape (1, number of examples)
 
    Returns:
    grads -- python dictionary containing your gradients with respect to different parameters
    """
    m = X.shape[1]
 
    # First, retrieve W1 and W2 from the dictionary "parameters".
    ### START CODE HERE ### (≈ 2 lines of code)
    W1 = parameters['W1']
    W2 = parameters['W2']
    ### END CODE HERE ###
 
    # Retrieve also A1 and A2 from dictionary "cache".
    ### START CODE HERE ### (≈ 2 lines of code)
    A1 = cache['A1']
    A2 = cache['A2']
    ### END CODE HERE ###
 
    # Backward propagation: calculate dW1, db1, dW2, db2.
    ### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above)
    dZ2 = A2-Y
    dW2 = (1.0/m)*np.dot(dZ2,A1.T)
    db2 = (1.0/m)*np.sum(dZ2, axis = 1, keepdims=True)
    dZ1 = np.dot(W2.T,dZ2)*(1 - np.power(A1, 2))
    dW1 = np.dot(dZ1, X.T)/m
    db1 = np.sum(dZ1,axis=1,keepdims = True)/m
    ### END CODE HERE ###
 
    grads = {"dW1": dW1,
             "db1": db1,
             "dW2": dW2,
             "db2": db2}
 
return grads

 

Question: Implement the update rule. Use gradient descent. You have to use (dW1, db1, dW2, db2) in order to update (W1, b1, W2, b2).(实施更新规则。使用渐变下降。你必须使用(dW1db1dW2db2)来更新(W1b1W2b2)。)

General gradient descent ruleθ=θαJθ where α is the learning rate and θ represents a parameter.

Illustration: The gradient descent algorithm with a good learning rate (converging) and a bad learning rate (diverging). Images courtesy of Adam Harley.(具有良好学习速率(收敛)和不良学习速率(发散)的梯度下降算法。)

# GRADED FUNCTION: update_parameters
 
def update_parameters(parameters, grads, learning_rate = 1.2):
    """
    Updates parameters using the gradient descent update rule given above
 
    Arguments:
    parameters -- python dictionary containing your parameters
    grads -- python dictionary containing your gradients
 
    Returns:
    parameters -- python dictionary containing your updated parameters
    """
    # Retrieve each parameter from the dictionary "parameters"
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    ### END CODE HERE ###
 
    # Retrieve each gradient from the dictionary "grads"
    ### START CODE HERE ### (≈ 4 lines of code)
    dW1 = grads["dW1"]
    db1 = grads["db1"]
    dW2 = grads["dW2"]
    db2 = grads["db2"]
    ## END CODE HERE ###
 
    # Update rule for each parameter
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = W1 - learning_rate*dW1
    b1 = b1 - learning_rate*db1
    W2 = W2 - learning_rate*dW2
    b2 = b2 - learning_rate*db2
    ### END CODE HERE ###
 
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
 
return parameters

 

4.4 – Integrate parts 4.1, 4.2 and 4.3 in nn_model()

Question: Build your neural network model in nn_model().

Instructions: The neural network model has to use the previous functions in the right order.

# GRADED FUNCTION: nn_model
 
def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):
    """
    Arguments:
    X -- dataset of shape (2, number of examples)
    Y -- labels of shape (1, number of examples)
    n_h -- size of the hidden layer
    num_iterations -- Number of iterations in gradient descent loop
    print_cost -- if True, print the cost every 1000 iterations
 
    Returns:
    parameters -- parameters learnt by the model. They can then be used to predict.
    """
 
    np.random.seed(3)
    n_x = layer_sizes(X, Y)[0]
    n_y = layer_sizes(X, Y)[2]
 
    # Initialize parameters, then retrieve W1, b1, W2, b2. 
    #Inputs: "n_x, n_h, n_y". Outputs = "W1, b1, W2, b2, parameters".
    ### START CODE HERE ### (≈ 5 lines of code)
    parameters = initialize_parameters(n_x, n_h, n_y)
    W1 = parameters['W1']
    b1 = parameters['b1']
    W2 = parameters['W2']
    b2 = parameters['b2']
    ### END CODE HERE ###
 
    # Loop (gradient descent)
    import pdb
    for i in range(0, num_iterations):
 
        ### START CODE HERE ### (≈ 4 lines of code)
        # Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".
        A2, cache = forward_propagation(X, parameters)
 
        # Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".
        cost = compute_cost(A2, Y, parameters)
 
        # Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".
        grads = backward_propagation(parameters, cache, X, Y)
 
        # Gradient descent parameter update. Inputs: "parameters, grads". 
        #Outputs: "parameters".
        parameters = update_parameters(parameters, grads)
 
        ### END CODE HERE ###
 
        # Print the cost every 1000 iterations
        if print_cost and i % 1000 == 0:
            print ("Cost after iteration %i: %f" %(i, cost))
 
return parameters

 

4.5 Predictions

Question: Use your model to predict by building predict(). Use forward propagation to predict results.

Reminder: predictions = yprediction=?{activation > 0.5}={1if activation>0.5 0otherwise

As an example, if you would like to set the entries of a matrix X to 0 and 1 based on a threshold you would do: X_new = (X > threshold) (例如,如果你想根据一个阈值将矩阵X的条目设置为01,你可以这样做:X_new = (X > threshold))

# GRADED FUNCTION: predict
 
def predict(parameters, X):
    """
    Using the learned parameters, predicts a class for each example in X
 
    Arguments:
    parameters -- python dictionary containing your parameters 
    X -- input data of size (n_x, m)
 
    Returns
    predictions -- vector of predictions of our model (red: 0 / blue: 1)
    """
 
    # Computes probabilities using forward propagation, 
    #and classifies to 0/1 using 0.5 as the threshold.
    ### START CODE HERE ### (≈ 2 lines of code)
    A2, cache = forward_propagation(X, parameters)
    predictions = np.array([0 if i <= 0.5 else 1 for i in np.squeeze(A2)])
    ### END CODE HERE ###
 
return predictions
parameters, X_assess = predict_test_case()
 
predictions = predict(parameters, X_assess)
print("predictions mean = " + str(np.mean(predictions)))
# Build a model with a n_h-dimensional hidden layer
parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True)
 
# Plot the decision boundary
plot_decision_boundary(lambda x: predict(parameters, x.T), X, np.squeeze(Y))
plt.title("Decision Boundary for hidden layer size " + str(4))
# Print accuracy
predictions = predict(parameters, X)
print ('Accuracy: %d' % float((np.dot(Y,predictions.T) + 
       np.dot(1-Y,1-predictions.T))/float(Y.size)*100) + '%')

The image is

3.png

Accuracy: 88%

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注