Planar data classification with one hidden layer
Let’s first import all the packages that you will need during this assignment.
– numpy is the fundamental package for scientific computing with Python.
– sklearn provides simple and efficient tools for data mining and data analysis.
– matplotlib is a library for plotting graphs in Python.
– testCases_v2 provides some test examples to assess the correctness of your functions
– planar_utils provide various useful functions used in this assignment
2 – Dataset
First, let’s get the dataset you will work on. The following code will load a “flower” 2-class dataset into variables X
and Y
.
X, Y = load_planar_dataset()
Visualize the dataset using matplotlib. The data looks like a “flower” with some red (label y=0) and some blue (y=1) points. Your goal is to build a model to fit this data.
plt.scatter(X[0, :], X[1, :], c=np.squeeze(Y), s=40, cmap=plt.cm.Spectral);#将Y中的单维去掉
Exercise: How many training examples do you have? In addition, what is the shape of the variables X and Y?
shape_X = X.shapeprint("X's shape is " + str(shape_X))shape_Y = Y.shapeprint("Y's shape is " + str(shape_Y))m=X.shape[1]print("We have " + str(m) + " examples.")
3 – Simple Logistic Regression
Before building a full neural network, lets first see how logistic regression performs on this problem. You can use sklearn’s built-in functions to do that. Run the code below to train a logistic regression classifier on the dataset.
# Train the logistic regression classifierclf = sklearn.linear_model.LogisticRegressionCV();clf.fit(X.T, Y.T);# Plot the decision boundary for logistic regressionplot_decision_boundary(lambda x: clf.predict(x), X, np.squeeze(Y))plt.title("Logistic Regression") # Print accuracyLR_predictions = clf.predict(X.T)print ('Accuracy of logistic regression: %d ' % float((np.dot(Y,LR_predictions) + np.dot(1-Y,1-LR_predictions))/float(Y.size)*100) + '% ' + "(percentage of correctly labelled datapoints)")
4 – Neural Network model
Logistic regression did not work well on the “flower dataset”. You are going to train a Neural Network with a single hidden layer.
Reminder: The general methodology to build a Neural Network is to:
1. Define the neural network structure ( # of input units, # of hidden units, etc). (定义神经网络结构(输入单元数量,隐藏单元数量等)。)
2. Initialize the model’s parameters(初始化模型的参数)
3. Loop:
– Implement forward propagation(实现向前传播)
– Compute loss(计算损失函数)
– Implement backward propagation to get the gradients(实现向后传播以获得梯度)
– Update parameters (gradient descent)(更新参数,梯度下降)
You often build helper functions to compute steps 1-3 and then merge them into one function we call nn_model()
. Once you’ve built nn_model()
and learnt the right parameters, you can make predictions on new data.(您经常构建帮助函数来计算步骤1-3,然后将它们合并到一个函数中,我们称之为nn_model
()
。一旦你建立了nn_model
()
并学习了正确的参数,你就可以预测新的数据。)
4.1 – Defining the neural network structure
Exercise: Define three variables:
– n_x: the size of the input layer 输入层的节点数
– n_h: the size of the hidden layer (set this to 4) 隐藏层的节点数
– n_y: the size of the output layer 输出层的节点数
Hint: Use shapes of X and Y to find n_x and n_y. Also, hard code the hidden layer size to be 4.
# GRADED FUNCTION: layer_sizes def layer_sizes(X, Y): """ Arguments: X -- input dataset of shape (input size, number of examples) Y -- labels of shape (output size, number of examples) Returns: n_x -- the size of the input layer n_h -- the size of the hidden layer n_y -- the size of the output layer """ ### START CODE HERE ### (≈ 3 lines of code) n_x = X.shape[0] # size of input layer n_h = 4 n_y = Y.shape[0] # size of output layer ### END CODE HERE ### return (n_x, n_h, n_y)
4.2 – Initialize the model’s parameters
Exercise: Implement the function initialize_parameters()
.
Instructions:
– Make sure your parameters’ sizes are right. Refer to the neural network figure above if needed.(确保你的参数的大小是正确的。如果需要,请参考上面的神经网络图。)
– You will initialize the weights matrices with random values. (你将用随机值初始化权重矩阵。)
– Use: np.random.randn(a,b) * 0.01
to randomly initialize a matrix of shape (a,b).
– You will initialize the bias vectors as zeros. (你将初始化偏置向量为零。)
– Use: np.zeros((a,b))
to initialize a matrix of shape (a,b) with zeros.
def initialize_parameters(n_x, n_h, n_y): """ Argument: n_x -- size of the input layer n_h -- size of the hidden layer n_y -- size of the output layer Returns: params -- python dictionary containing your parameters: W1 -- weight matrix of shape (n_h, n_x) b1 -- bias vector of shape (n_h, 1) W2 -- weight matrix of shape (n_y, n_h) b2 -- bias vector of shape (n_y, 1) """ np.random.seed(2) # we set up a seed so that your output matches ours #although the initialization is random. ### START CODE HERE ### (≈ 4 lines of code) W1 = np.random.randn(n_h, n_x) W2 = np.random.randn(n_y, n_h) b1 = np.zeros((n_h, 1)) b2 = np.zeros((n_y, 1)) ### END CODE HERE ### assert (W1.shape == (n_h, n_x)) assert (b1.shape == (n_h, 1)) assert (W2.shape == (n_y, n_h)) assert (b2.shape == (n_y, 1)) parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} return parameters
4.3 – The Loop
Question: Implement forward_propagation()
.
Instructions:
– Look above at the mathematical representation of your classifier.(请看上面的分类器的数学表示。)
– You can use the function sigmoid()
. It is built-in (imported) in the notebook.(你可以使用函数sigmoid()
.它是notebook的内置函数)
– You can use the function np.tanh()
. It is part of the numpy library.(你可以使用函数np.tanh()
.它是notebook的内置函数)
– The steps you have to implement are:
1. Retrieve each parameter from the dictionary “parameters” (which is the output of initialize_parameters()
) by using parameters[".."]
.(使用parameters [“..”]
从字典“parameters”(这是initialize_parameters
()
的输出)中检索每个参数。)
2. Implement Forward Propagation. Compute Z[1],A[1],Z[2] and A[2] (the vector of all your predictions on all the examples in the training set).(实现向前传播。计算Z[1],A[1],Z[2]和A[2](训练中所有例子的所有预测的向量组)。)
– Values needed in the backpropagation are stored in “cache
“. The cache
will be given as an input to the backpropagation function.(反向传播所需的值存储在“cache”
中。
cache`将作为反向传播函数的输入。)
# GRADED FUNCTION: forward_propagation def forward_propagation(X, parameters): """ Argument: X -- input data of size (n_x, m) parameters -- python dictionary containing your parameters (output of initialization function) Returns: A2 -- The sigmoid output of the second activation cache -- a dictionary containing "Z1", "A1", "Z2" and "A2" """ # Retrieve each parameter from the dictionary "parameters" ### START CODE HERE ### (≈ 4 lines of code) W1 = parameters['W1'] W2 = parameters['W2'] b1 = parameters['b1'] b2 = parameters['b2'] ### END CODE HERE ### # Implement Forward Propagation to calculate A2 (probabilities) ### START CODE HERE ### (≈ 4 lines of code) Z1 = np.dot(W1, X) + b1 A1 = np.tanh(Z1) Z2 = np.dot(W2, A1) + b2 A2 = np.tanh(Z2) ### END CODE HERE ### assert(A2.shape == (1, X.shape[1])) cache = {"Z1": Z1, "A1": A1, "Z2": Z2, "A2": A2} return A2, cache
Exercise: Implement compute_cost()
to compute the value of the cost J.
Instructions:
– There are many ways to implement the cross-entropy loss. To help you, we give you how we would have implemented
−∑i=0my(i)log(a[2](i)):
# GRADED FUNCTION: compute_cost def compute_cost(A2, Y, parameters): """ Computes the cross-entropy cost given in equation (13) Arguments: A2 -- The sigmoid output of the second activation, of shape (1, number of examples) Y -- "true" labels vector of shape (1, number of examples) parameters -- python dictionary containing your parameters W1, b1, W2 and b2 Returns: cost -- cross-entropy cost given equation (13) """ m = Y.shape[1] # number of example # Compute the cross-entropy cost ### START CODE HERE ### (≈ 2 lines of code) logprobs = np.multiply(np.log(A2),Y) cost = -np.sum(logprobs + np.multiply(np.log(1 - A2),1 - Y))/m ### END CODE HERE ### cost = np.squeeze(cost) # makes sure cost is the dimension we expect. # E.g., turns [[17]] into 17 assert(isinstance(cost, float)) return cost
梯度下降算法:
# GRADED FUNCTION: backward_propagation def backward_propagation(parameters, cache, X, Y): """ Implement the backward propagation using the instructions above. Arguments: parameters -- python dictionary containing our parameters cache -- a dictionary containing "Z1", "A1", "Z2" and "A2". X -- input data of shape (2, number of examples) Y -- "true" labels vector of shape (1, number of examples) Returns: grads -- python dictionary containing your gradients with respect to different parameters """ m = X.shape[1] # First, retrieve W1 and W2 from the dictionary "parameters". ### START CODE HERE ### (≈ 2 lines of code) W1 = parameters['W1'] W2 = parameters['W2'] ### END CODE HERE ### # Retrieve also A1 and A2 from dictionary "cache". ### START CODE HERE ### (≈ 2 lines of code) A1 = cache['A1'] A2 = cache['A2'] ### END CODE HERE ### # Backward propagation: calculate dW1, db1, dW2, db2. ### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above) dZ2 = A2-Y dW2 = (1.0/m)*np.dot(dZ2,A1.T) db2 = (1.0/m)*np.sum(dZ2, axis = 1, keepdims=True) dZ1 = np.dot(W2.T,dZ2)*(1 - np.power(A1, 2)) dW1 = np.dot(dZ1, X.T)/m db1 = np.sum(dZ1,axis=1,keepdims = True)/m ### END CODE HERE ### grads = {"dW1": dW1, "db1": db1, "dW2": dW2, "db2": db2} return grads
Question: Implement the update rule. Use gradient descent. You have to use (dW1, db1, dW2, db2) in order to update (W1, b1, W2, b2).(实施更新规则。使用渐变下降。你必须使用(dW1,db1,dW2,db2)来更新(W1,b1,W2,b2)。)
General gradient descent rule: θ=θ−α∂J∂θ where α is the learning rate and θ represents a parameter.
Illustration: The gradient descent algorithm with a good learning rate (converging) and a bad learning rate (diverging). Images courtesy of Adam Harley.(具有良好学习速率(收敛)和不良学习速率(发散)的梯度下降算法。)
# GRADED FUNCTION: update_parameters def update_parameters(parameters, grads, learning_rate = 1.2): """ Updates parameters using the gradient descent update rule given above Arguments: parameters -- python dictionary containing your parameters grads -- python dictionary containing your gradients Returns: parameters -- python dictionary containing your updated parameters """ # Retrieve each parameter from the dictionary "parameters" ### START CODE HERE ### (≈ 4 lines of code) W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] ### END CODE HERE ### # Retrieve each gradient from the dictionary "grads" ### START CODE HERE ### (≈ 4 lines of code) dW1 = grads["dW1"] db1 = grads["db1"] dW2 = grads["dW2"] db2 = grads["db2"] ## END CODE HERE ### # Update rule for each parameter ### START CODE HERE ### (≈ 4 lines of code) W1 = W1 - learning_rate*dW1 b1 = b1 - learning_rate*db1 W2 = W2 - learning_rate*dW2 b2 = b2 - learning_rate*db2 ### END CODE HERE ### parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} return parameters
4.4 – Integrate parts 4.1, 4.2 and 4.3 in nn_model()
Question: Build your neural network model in nn_model()
.
Instructions: The neural network model has to use the previous functions in the right order.
# GRADED FUNCTION: nn_model def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False): """ Arguments: X -- dataset of shape (2, number of examples) Y -- labels of shape (1, number of examples) n_h -- size of the hidden layer num_iterations -- Number of iterations in gradient descent loop print_cost -- if True, print the cost every 1000 iterations Returns: parameters -- parameters learnt by the model. They can then be used to predict. """ np.random.seed(3) n_x = layer_sizes(X, Y)[0] n_y = layer_sizes(X, Y)[2] # Initialize parameters, then retrieve W1, b1, W2, b2. #Inputs: "n_x, n_h, n_y". Outputs = "W1, b1, W2, b2, parameters". ### START CODE HERE ### (≈ 5 lines of code) parameters = initialize_parameters(n_x, n_h, n_y) W1 = parameters['W1'] b1 = parameters['b1'] W2 = parameters['W2'] b2 = parameters['b2'] ### END CODE HERE ### # Loop (gradient descent) import pdb for i in range(0, num_iterations): ### START CODE HERE ### (≈ 4 lines of code) # Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache". A2, cache = forward_propagation(X, parameters) # Cost function. Inputs: "A2, Y, parameters". Outputs: "cost". cost = compute_cost(A2, Y, parameters) # Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads". grads = backward_propagation(parameters, cache, X, Y) # Gradient descent parameter update. Inputs: "parameters, grads". #Outputs: "parameters". parameters = update_parameters(parameters, grads) ### END CODE HERE ### # Print the cost every 1000 iterations if print_cost and i % 1000 == 0: print ("Cost after iteration %i: %f" %(i, cost)) return parameters
4.5 Predictions
Question: Use your model to predict by building predict(). Use forward propagation to predict results.
Reminder: predictions = yprediction=?{activation > 0.5}={1if activation>0.5 0otherwise
As an example, if you would like to set the entries of a matrix X to 0 and 1 based on a threshold you would do: X_new = (X > threshold)
(例如,如果你想根据一个阈值将矩阵X的条目设置为0和1,你可以这样做:X_new = (X > threshold)
)
# GRADED FUNCTION: predict def predict(parameters, X): """ Using the learned parameters, predicts a class for each example in X Arguments: parameters -- python dictionary containing your parameters X -- input data of size (n_x, m) Returns predictions -- vector of predictions of our model (red: 0 / blue: 1) """ # Computes probabilities using forward propagation, #and classifies to 0/1 using 0.5 as the threshold. ### START CODE HERE ### (≈ 2 lines of code) A2, cache = forward_propagation(X, parameters) predictions = np.array([0 if i <= 0.5 else 1 for i in np.squeeze(A2)]) ### END CODE HERE ### return predictionsparameters, X_assess = predict_test_case() predictions = predict(parameters, X_assess)print("predictions mean = " + str(np.mean(predictions)))# Build a model with a n_h-dimensional hidden layerparameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True) # Plot the decision boundaryplot_decision_boundary(lambda x: predict(parameters, x.T), X, np.squeeze(Y))plt.title("Decision Boundary for hidden layer size " + str(4))# Print accuracypredictions = predict(parameters, X)print ('Accuracy: %d' % float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100) + '%')
The image is
Accuracy: 88%