关于最长公共子序列(LCS)

最长公共子序列和最长公共子串是有区别的,之前我一直把它们混淆。

  1. 最长公共子串举例:假设S1={A,D,C,B,E,X,Q},S2={H,P,D,C,B,E,M,L}
    那么它们的最长公共子串就是{D,C,B,E}。这是我通常理解的东西。
    最长公共子序列。
  2. 最长公共子序列举例:假设S1={A,B,C,A,D,A,B},S2={B,A,C,D,B,A},那么它们的LCS就是{B,A,D,B}。

求解最长公共子序列

这是一个动态规划问题。如何求解最长公共子序列(以下用LCS代替)呢?我们假设已经知道Z={z1,z2,...zk}是X={x1,x2,...,xm}和Y={y1,y2,...,yn}的LCS,那么可以分以下三种情况讨论(具体每种情况证明不再累述):
1. xm=yn=zk:那么Zk-1是Xm-1和Yn-1的LCS。
2. xm≠yn,yn≠zk:我们可以把yn去掉,那么Zk是Xm和Yn-1的LCS。
3. xm≠yn,xm≠zk:我们可以把xm去掉,那么Zk是Xm-1和Yn的LCS。

基于以上情况,我们可以得到LCS递归式。我们假设c[i][j]表示Xi和Yi的LCS长度,那么:

  • c[i][j]=0(i=0或j=0);
  • c[i][j]=c[i-1]c[j-1]+1(i,j>0且xi=yi);
  • c[i][j]=max{c[i-1][j],c[i],[j-1]};(i,j>0且xi≠yi)。

这样我们就可以得到LCS的长度。如何得到具体内容是什么呢?我们可以借用一个辅助数组b[i][j],这个数组用来记录c[i][j]的来源,分别有如下情况:

  • c[i][j]=c[i-1][j-1]+1,则b[i][j]=1;
  • c[i][j]=c[i][j-1],则b[i][j]=2;
  • c[i][j]=c[i-1][j],则b[i][j]=3。

这样就可以根据b[m][n]反向追踪LCS,当b[i][j]=1,输出xi;当b[i][j]=2,追踪c[i][j-1];当b[i][j]=3,追踪c[i-1][j],直到i=0或j=0停止。

算法设计

(1)初始化。初始化c[][]第1行和第1列为0。
(2)开始操作。具体是将s1[i]分别与s2[j-1](j=1,2,...,len2)进行比较,若字符相等c[i][j]=左上角数值+1,且b[i][j]=1;若不相等,则c[i][j]等于左侧或者上侧重最大的一个数值,若左侧和上侧相等,则取左侧,且b[i][j]=2或3(当取左侧为2,取上侧为3)。最后的c[][]和b[][]如下所示:
下表是c[][]:

0123456
0000000
A0011111
B0111122
C0112222
A0122223
D0122333
A0122334
B0122344

下表是b[][]:

0123456
0000000
10212221
20122212
30321222
40312221
50332122
60312321
70132312

根据c[][]可以得出,LCS的长度为4(也就是c[][]最后一个值)。然后开始判断内容是什么,这是要根据b[][]来。
首先,b[7][6]=2,向左找b[7][5]=1,所以向左上角找b[6][4],得到字母为s1[6]=[B];
b[6][4]=3,向上找b[5][4]=1,向左上角找b[4][3],得到字母s1[4]=[D];
b[4][3]=2,向左找b[4][2=1,向左上角找b[3][1],得到字母s1[3]=[A];
b[3][1]=3,向上找b[2][1]=1,向左上角找b[1][0],得到字母s1[1]=[B].
由于b[1][0]=0,所以算法停止,返回结果为“BADB”。

代码演示

编辑距离

编辑距离和LCS的不同点

  1. 编辑距离的d[][]取值公式如下:
    (一个前提,若xi=yj,则diff=0;否则为1)
    d[i][j]=min{d[i - 1][j] + 1, d[i][j - 1] + 1,d[i-1][j-1]+diff}
  2. 构造最优解:编辑距离是从右下角开始,逆向查找d[i][j]的来源:上面表示需要删除,左侧表示需要插入;左上角要判断字符是否相等,若相等,不做任何操作,若不相等,执行替换
  3. 两者的时间复杂度都是O(n*m)。

代码实现

游艇租赁问题

假设在一条河上有n个游艇出租站,游客可以在这些游艇出租站租游艇,并在下游的任何一个游艇出租站归还游艇。游艇出租站i到j之间的租金为r(i,j),i<=i<=j<=n。设计一个算法,计算从游艇出租站i到出租站j所需要的租金最少。

问题分析

(1)分析最优解的结构特征
(2)简历最优值的递归式
m[i][j]=
0(j=i);
r[i][j];j=i+1;
min{m[i][k]+m[k][j],r[i][j],j>i+1。

算法设计

(1)确定合适的数据结构:采用二维数组r[][]输入数据,二维数组m[][]存放各个子问题的最优值,二维数组s[][]存放各个子问题的最优决策(停靠站点)。
(2)初始化:m[i][j]=r[i][j],然后再找有没有比m[i][j]小的值,如果有,则记录该最优值和最优解即可,s[i][j]=0.
(3)循环阶段:

  • 按照递归关系式计算3个站点i,i+1,j(j=i+2)的最优值,并将其存入m[i][j],同时将最优策略存入s[i][j],i=1,2,...,n-2。
  • 按照递归关系式计算4个站点i,i+1,i+2,j(j=i+3)的最优值,并将其存入m[i][j],同时将最优策略存入s[i][j],i=1,2,...,n-3。
  • 以此类推,直到求出n个站点的最优值m[1][n]。

(4)构造最优解。根据s[][]递归构造最优解。s[1][n]是第一个站点到底n个站点)1,2,...,n)的最优解的停靠站点,即停靠了第s[1][n]个站点,我们在递归构造两个子问题(1,2,...,k)和(k,k+1,...,n)的最优解停靠站点,一直递归到只包含一个站点为止。

代码实现

代码实现2:最贵的租金

其实只是把总结的递归式中的j>i+1的时候的min改为了max。所以只是修改了代码中的

将其改为了

快速计算——矩阵连乘

最优递归式:
当i=j时,只有一个矩阵,m[i][j]=0;
当i<j的时候,m[i][j]=min{m[i][k]+m[k+1][j]+pip(k+1)qj}

算法设计

(1)确定合适的数据结构。用一维数组p[]记录矩阵的行和列,第i个矩阵的行数存在数组的第i-1位置,列存在第i位置。二维数组m[][]用来存放各个子问题的最优值,二维数组s[][]来存放各个子问题的最优决策(加括号的位置)。
(2)初始化。m[i][i]=0,s[i][i]=0。
(3)循环阶段。
- 按照递归关系式计算2个矩阵Ai、Ai+1相乘时的最优值,j+i+1,并将其存入m[i][j];同时将最优策略计入s[i][j]。i=1,2,3,..,n-1。
- 按照递归关系式计算3个矩阵相乘Ai、Ai+1、Ai+2,相乘时的最优值,j+i+2,并将其存入m[i][j],同时将最优策略记入s[i][j],i=1,2,3,...,n-2。
- 以此类推,直到求出n个矩阵相乘的最优值m[1][n]。

(4)构造最优解
根据最有决策信息数组s[][]递归构造最优解。s[1][n]表示A1A2...An最优解的加括号位置,我们在递归构造两个子问题的最优解加括号位置,一直低轨道子问题只包含一个矩阵为止。

举例图解

矩阵A1A2A3A4A5
规模3*55*1010*88*22*4

(1)初始化
m[i][i]=0,s[i][i]=0
(2)计算两个矩阵相乘的最优值
m[][]如下:

m[][]12345
10150390290314
20400260300
30160240
4064
50

s[][]如下:

s[][]12345
101214
20224
3034
404
50

(3)构造最优解
类似于游艇租赁

代码实现